In many situations, the efficacy of nutrient timing is inherently tied to the concept of optimal fueling. Thus, the importance of adequate energy, carbohydrate, and protein intake must be emphasized to ensure athletes are properly fueled for optimal performance as well as to maximize potential adaptations to exercise training.
Prolonged exercise (> 60 – 90 min) of moderate to high intensity (65–80% VO2max) relies heavily upon endogenous carbohydrate stores, and timing strategies to maximize these stores (carbohydrate loading or glycogen supercompensation strategies) have been shown to facilitate recovery and offset these changes.
High-intensity exercise (particularly in hot and humid conditions) demands aggressive carbohydrate and fluid replacement. Consumption of 1.5–2 cups (12–16 fluid ounces) of a 6–8% carbohydrate solution (6–8 g carbohydrate per 100 mL of fluid) has been shown as an effective strategy to replace fluid, sustain blood glucose levels and promote performance. The need for carbohydrate replacement increases in importance as training and competition extend beyond 70 min of activity and the need for carbohydrate during shorter durations is less established.
Rapid ingestion of high amounts of carbohydrates (≥ 1.2 g/kg/h) for four to 6 h soon after exhausting exercise can rapidly stimulate replenishment of muscle glycogen.
Adding protein (0.2–0.5 g/kg/h) to carbohydrate increases the rate of glycogen resynthesis when ingesting < 1.2 g/kg/h of carbohydrate. Moreover, the additional protein may minimize muscle damage, promote favorable hormone balance and accelerate recovery from intense exercise.
For athletes completing high volumes (i.e., ≥ 8 h) of exercise per week and subsequently requiring the need to continually and rapidly replenish endogenous glycogen stores, the single most effective strategy to maximize endogenous glycogen stores is the consumption of a daily diet high in carbohydrate (8–12 g/kg/day).
The use of a 20–40-g dose of a high-quality protein source that contains approximately 10–12 g of the EAA maximizes MPS rates that remain elevated for three to four hours following exercise.
Protein consumption during the peri-workout period is a pragmatic and sensible strategy for athletes, particularly those who perform high volumes of exercise. Not consuming protein post-workout (e.g., waiting for several hours post-exercise) offers no benefits.
The impact of delivering a dose of protein (with or without carbohydrates) during the peri-workout period over the course of several weeks may operate as a strategy to heighten adaptations to exercise. Key factors that may influence the overall outcomes include one’s total daily protein intake, an individual’s training status and when their last dose of protein was consumed.
Like carbohydrate, timing related considerations for protein appear to be of lower priority than the ingestion of optimal amounts of daily protein (1.4–2.0 g/kg/day).
In the face of restricting caloric intake for weight loss, altering meal frequency has shown limited effects on body composition. However, more frequent meals may be more beneficial when accompanied by an exercise program. The impact of altering meal frequency in combination with an exercise program in non-athlete or athlete populations warrants further investigation. It is established that altering meal frequency (outside of an exercise program) may help with controlling hunger, appetite and satiety.
Nutrient timing strategies that involve changing the distribution of intermediate-sized protein doses (20–40 g or 0.25–0.40 g/kg/dose) every three to 4 h best supports increased MPS rates across the day and favorably enhances body composition and physical performance outcomes. One must also consider that other factors such as the type of exercise stimulus, training status, and consumption of mixed macronutrient meals versus sole protein feedings can all impact how protein is metabolized across the day.
When consumed within 30 min before sleep, 30–40 g of casein may increase MPS rates and improve strength and muscle hypertrophy. In addition, protein ingestion prior to sleep may increase morning metabolic rate while exerting minimal influence over lipolysis rates. In addition, pre-sleep protein intake can operate as an effective way to meet daily protein needs while also providing a metabolic stimulus for muscle adaptation.
Altering the timing of energy intake (i.e., total calories over the course of a day) may improve weight loss, body composition changes, and health-related markers, particularly when a greater proportion of calories are consumed during breakfast and to a greater extent when this meal provides higher amounts of dietary protein.